Buchholz Relays
Series
RR - RRF - GQ
1.0 Contents of specification

The specification outlines the function and gives the construction and operating features of the devices in reference as well as the environmental and operating conditions for which the devices are designed. These last depend mainly on the compatibility of the materials, components and finishing with the environmental and operating conditions of the transformer, and, for the electrical circuits and the contacts, from their degree of protection.

The compatibility limits are indicated for the different executions.

2.0 Function

The Buchholz relay detects and signals following irregularities that can produce themselves during the operation of the transformer:

- Presence of air bubbles due to faulty initial filling or faulty seal of gaskets;
- Formation of gas due to burning of oil or solid insulation;
- Lowering of oil level due to leak of the tank;
- Oil flow from tank to conservator due to explosion or short circuit.

The analysis of the gases accumulated inside the Buchholz relay as well as the speed of accumulation give a rough indication about the functionality of the transformer.

3.0 Construction Features

3.1 Materials and Components

- Body and head with terminal box of aluminium casting;
- Tempered glass spy holes;
- Glass frames and cover of terminal box of nylon reinforced by glass fibre;
- Nickel coated brass cocks;
- Antimagnetic stainless steels internal active part;
- Unsinkable closed cell expanded floats;
- Gaskets as specified for the different executions;
- External screws of stainless steel;
- External parts of brass galvanised.

3.2 Reference Drawings

Assembly and overall dimensions:

Series RR - dimensions according to standard UNEL 21006
 - Type RR 025
 - N° 4.501.30
 - Types RR 050 - RR 080 - RR 100
 - N° 4.900.00

Series RRF - dimensions according to standard NF C 52-108
 - Types RRF 050 - RRF 080
 - N° 4.650.00

Series GQ - dimensions according to Australian standard
 - Types GQ 050 - GQ 080
 - N° 4.900.10

Accessories and fittings
 - N° 4.900.20
Definition of execution
 - N° 4.900.003
Assembly on pipeline
 - N° 4.900.001

Other dimensions are available on request.
3.3 Electric Circuits and Contacts

- Hermetically sealed, inert gas filled, magnetically operated contacts with Teflon insulated cables;
- Junction box with degree of protection IP 65 and ventilation system;
- Nickel coated brass terminals, insulated by nylon reinforced with glass fibre and identified as per specification of wiring diagrams by a number on a label inside the cover of the junction box. Terminals are designed and mounted so as to avoid rotation while tightening the cable on the terminal; the fixing nut is of the self-locking type.

The characteristics of the contact, the junction box, the terminals and the electric circuits are explained in details by specification N° 04RRCONRxx.

3.4 Contacts Check Device

The standard mechanical contacts check device is mounted on the head of the Buchholz relay, protected by an oil tight cap, and operates by rotation. A label inside the terminal box explains how to carry out the test.

On request, following features can be supplied:

- The mechanical check device can be connected at man's height to the device CCC, in order to be able to effect the test from the ground.
- The device resets the oil flow vane if the vane is requested to be manually resetted;
- The operation of the oil flow vane contacts can be tested also by injecting gas into the relay;
- The operation of the contacts of the lower float can tested by gas injection.

3.5 Gas Sampling and Gas and Oil Discharge Taps

The Buchholz relays Series RR can be supplied with a gas sampling tap on the lower part of the body as well as on the head of the relay; this disposition allows an easier sampling when the minimum oil level in the conservator is only slightly higher than the relay head. The oil drain plug can be supplanted by a cock with or without connection for a copper pipe to ground level.

For the analysis of the gases collected by the relay, the EG5 gas test device can be mounted either on top of the Buchholz relay or on the gas collector RA-GA "B" at ground level.

3.6 Floats

The floats are made of closed cell expanded material based on nitrile rubber and therefore are not subject to punctures or to be damaged by overpressures, thus loosing the buoyancy.

3.7 Tightness and Resistance to Pressure

The Buchholz relays Series RR are:

- Oil tight to transformer oil at 100°C and 1 bar;
- Mechanical and electrical resistance to vacuum (10 torr);
- Mechanical resistance to pressure up to 4 bar.

3.8 Resistance to Dynamical Stress

The Buchholz relays Series RR are designed to operate without undue contacts to the following dynamical conditions:

- Sinus vibrations with frequency <= 120 Hz and amplitude <= 250 µ;
- Dynamical conditions with accelerations with:
 - Max 3g on every axis, sinus form, amplitude <= 20 mm;
 - Shock max 10g on every axis
3.9 Painting and Protection against Corrosion
Casting and head are painted internally and externally by one coat of epoxy primer and externally by one finishing coat of polyurethane paint, final colour RAL 7031. The primer paint is resistant to transformer oil up to 120°C. The painting cycle is agreed by the Italian electricity authority ENEL. The specification N° 00VERRxx describes in details all the relevant characteristics of the painting.

4.0 Operation and Installation
The following description applies only to Series RR, RRF and GQ in the dimensions ND 50, ND 80 and ND 100.

4.1 General Features
The active part of the Buchholz relay consists of three mechanically independent units, operated respectively by the upper float, lower float and the oil flow vane. Every unit can work one or two contacts, according to the chosen wiring diagram as indicated by specification N° 04RRCONRxx. The oil flow vane can operate also the contact or contacts of the lower float unit. Furthermore the oil flow vane unit can be linked rigidly to the lower float unit, thus making it possible to work a total of four contacts for low oil, persistent gas accumulation and/or oil flow.

4.2 Operation for Gas Accumulation, Low Oil and Oil Flow
In standard execution the contacts are set to operate as specified by standard EN 50216-2. The specification N° 04RRSCHRxx indicates for every wiring diagram the operation values. In special execution the relays Series RR, RRF and GQ can be supplied:
- With the oil flow vane set to operate for oil flow from 0,5 to 3,0 m/sec; the setting is fixed and can be changed only in our factory;
- With independent contacts for low oil and oil flow;
- With the lower float operating also for continuous gas accumulation;
- With manual reset of the oil flow contact and optical indication.

4.3 Installation
The Buchholz relays have to be mounted on the pipe between tank and conservator. The pipeline must be laid out so as to assure that all gas formation inside the transformer is piped into the Buchholz relay. The pipeline diameter, which determines also the diameter of the Buchholz relay, must be such as to assure that the oil flow generated by a fault or a short circuit inside the transformer can flow to the conservator without excessive hydrodynamic resistance. To meet these conditions, in some cases it may be advisable to install more than one Buchholz relay on the transformer.

An arrow on the casting of the head shows the installation direction and must be installed pointing to the conservator. The four mounting screws of the head on the casting are unevenly spaced so as to make a faulty assembly impossible.

5.0 Operating Limits
The materials and the components determining the operating limits of these Buchholz relays are mainly those used for the gaskets and for the insulation of the contacts cables as well as the contacts themselves.
5.1 Standard Execution

Gaskets are of nitrile rubber and the admitted operating conditions are:

Ambient conditions:
- Ambient temperature: -20°C - +50°C
- Relative Humidity: 95% at 20°C - 80% at 40°C - 50% at 50°C

Insulating liquid:
- Mineral oil or silicone oil
- Temperature range: -20°C - +110°C

5.2 Execution Sil

Gaskets are of silicone rubber for low temperature and the admitted operating conditions are:

Ambient conditions:
- Ambient temperature: -50°C - +50°C
- Relative Humidity: 95% at 20°C - 80% at 40°C - 50% at 50°C

Insulating liquid:
- Mineral oil
- Temperature range: -50°C - +130°C

5.3 Special Executions

For other ambient or operating conditions to be defined specifically.

6.0 Type Identification

Taking for example relay Buchholz type RR 050 04-101C R16 Sil, type name which identifies a:
- Buchholz relay Series RR;
- Nominal diameter 50 mm;
- Wiring diagram 04-101C according to specification N° 04RRSCHRxx;
- Fittings and accessories R16 according to drawing N° 4.900.003;
- Silicone rubber gaskets for low temperature, execution Sil

Buchholz relays Series RR are identified as follows:

<table>
<thead>
<tr>
<th>RR</th>
<th>050</th>
<th>04-101C</th>
<th>R16</th>
<th>Sil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificati of the series</td>
<td>Identification of nominal diameter</td>
<td>Identification of wiring diagram according to specification N° 04RRSCHRxx</td>
<td>Identification of fitting and accessories according to drawing N° 4.900.003</td>
<td>Identification of execution with silicone rubber gaskets</td>
</tr>
</tbody>
</table>

7.0 Reference Specifications

- Wiring diagrams N° 04RRSCHRxx
- Features of contacts, terminals and electric circuits N° 04RRCONRxx
- Ground level device to check contacts operation CCC N° 08CCGENRxx
- Ground level device for gas accumulation RA-GA "B" N° 07RBGENRxx
- Gas sampling device EG5 N° 09EGGENRxx
- Painting and corrosion protection N° 00VERRxx
1.0 Contents of specification

The specification outlines the characteristics of the contacts as well as their electrical and mechanical performance and the different wiring diagrams that can be supplied; for the detailed description of the operation and disposition of the contacts for every wiring diagram see specification N° 04RRSCHRxx.

2.0 Electric contacts

2.1 Contact's type

The contacts used for the Buchholz relays Series RR, RRF and GQ are hermetically sealed, inert gas filled, magnetically operated contacts, which can be of the normally open (NO), normally closed (NC) or changeover type (SC). They are made up by two blades, a rigid and a flexible one, which both have at one end a contact cap and are rigidly fixed in a sealed glass cylinder at the other end that encloses them; the glass cylinder is filled with inert gas. By bringing a magnet near the free end of the blades, the flexible blade is pressed against the rigid one (or separated from the rigid one in a NC contact) thus closing (or opening) the contact. The SC contact has two rigid blades and the flexible blade switches between the two ones.

2.2 Materials and contacts performance

- Contact's cap material: Silver
- Cable insulation: heat shrinking Teflon
- Admissible temperature range: -50°C / +125°C
- Interruption power for 1x10⁵ cycles and max 3 operations per minute
 - NO and NC contacts: 250 W / 400 VA
 - SC contact: 200 W / 300 VA
- Insulation to earth at 20°C: 2.500 V
- Insulation of the open contact at 20°C
 - NO and NC contacts: 2.500 V
 - SC contact: 2.000 V
- Maximum current: 2 A
- Maximum current admissible for 1 sec.: 100 A
- Admissible tension: 2a V / 250 V
- Electrical resistance of the closed contact: 500 mΩ

3.0 Feasibility limits of the wiring diagrams and performance

The wiring diagrams described in detail by specification N° 04RRSCHRxx are those most commonly used. Other wiring diagrams can be obtained within the limitations shown below.

3.1 Limits of the wiring diagram

3.1.1 Buchholz Relay Type RR 025 (MD 25 mm)

Maximum two independent contacts; one operated by upper float and one operated by lower float and oil flow vane. Maximum 6 terminals.

3.1.2 Buchholz Relay Series RR, RRF and GQ with MD 50 mm

For this Buchholz relay the lower float operates always also for continuous gas accumulation, after the upper float has operated; therefore all wiring diagrams which contemplate the operation of the lower float only for the low oil condition are not possible.
3.1.3 Buchholz Relays Series RR, RRF and GQ with MD 50, 80 and 100 mm

Maximum 2 contacts for each one of the following positions:
- The upper float;
- The lower float;
- The oil flow vane.

The lower float can be linked rigidly to the oil flow vane and therefore for these two positions a total of four contacts operating for low oil and oil flow can be obtained.

Maximum 12 terminals; the maximum number of terminals that fit into the junction box is 12; should it be necessary to connect a higher number of cables from the contacts, more than one cable can be connected to the same terminal.

3.2 Performance of the wiring diagrams

3.2.1 Gas accumulation and low oil

The tables of specification N° 04RRSCHRxx show for every wiring diagram the standard operating values of every contact for gas accumulation and low oil; these values correspond to those of standard EN 50216-2; the admitted tolerance is +/- 30 cm3.

On request, the operation for gas accumulation of the upper float can be set between 100 cm3 and 350 cm3; the lower float can operate between 450 cm3 and 850 cm3. For the lower float the indicated gas volume is the one inside the Buchholz relay.

The operation of the lower float for the low oil condition happens before the oil level inside the relay reaches the C/L of the pipe.

3.2.2 Oil flow

If not otherwise required the standard operating value for the oil flow vane is 1,0 m/s; on request his value can be set between 0,5 m/s and 3,0 m/s; the setting is made in the factory.

The admitted tolerance is +/- 10% of the nominal value.

3.3 Operation of the contacts

If 2 contacts are present in one position, these can be set to operate simultaneously or, only for gas accumulation and low oil, in sequence; for gas accumulation and low oil the operation of two contacts set to operate simultaneously must happen within the tolerance indicated above.

4.0 Reference specifications

- Wiring diagrams N° 04RRSCHRxx
1.0 Performance and description of the wiring diagrams

The specification gives a complete description of the performance and function of the wiring diagrams.

2.0 Wiring diagrams

2.1 Identification by numbering of the wiring diagrams

The identification numbering of the wiring diagrams follows criteria that allow to identify the type and approximate operation of the wiring diagram from its number.

2.1.1 Key to numbering of wiring diagrams

Every position in the number identifying a wiring diagram is related to a function of the Buchholz relay. Taking as an example the standard wiring diagram 04-101C, the numbering has the following meaning:

- **04** = Wiring diagram for Buchholz relay;
- **101C** = Number and type of contacts worked by the upper float; in the example 1 normally open contact;
- **04** = Number and type of contacts worked exclusively by the oil flow vane; in the example (0) no contact is worked exclusively by the oil flow vane.

N.B. If, like in the example, no contact is worked by the oil flow vane, the vane is connected to the lower float so as to lower it when the oil flow trips the vane, thus operating the lower float contact. If one or more contacts are worked exclusively by the oil flow vane (value ? 0) the vane is independent from the lower float.

- **04** = Number and type of contacts worked by the lower float; in the example 1 normally open contact;
- **04** = Operation of the lower float:
 - **C** = operation only for low oil;
 - **F** = operation for low oil and gas accumulation.

2.1.2 Meaning of the numbers or letters

The numbers or letters of every position in the number of the wiring diagram indicate number and type of contacts operated by every function of the Buchholz relay according to following list:

One contact for every function

- **0** = no contact for this function
- **1** = 1 contact NO;
- **2** = 1 contact NC;
- **3** = 1 contact SC

Two contacts for every function, operating simultaneously

- **5** = 2 NO contacts;
- **4** = 2 NC contacts;
- **6** = 2 SC contacts;
- **7** = 1 NO + 1 NC contact;
- **8** = 1 NC + 1 SC contact;
- **9** = 1 NO + 1 SC contact

Two contacts for every function, operating in sequence

- **A** = 2 NO contacts;
- **B** = 2 NC contacts;
- **C** = 2 SC contacts;
- **D** = 1 NO + 1 NC contact;
- **E** = 1 NC + 1 SC contact;
- **F** = 1 NO + 1 SC contact

Oil flow vane and lower float linked rigidly

- **Y** = the letter Y in the positions of the oil flow vane indicates that the oil flow vane is connected rigidly to the lower float. The letter Y is followed by two numbers, the first indicating the total number of contacts for the two positions and the second indicating the type of contact.
3.0 Notes on tables of function and performance of wiring diagrams

The most commonly used wiring diagrams are described in detail in the following tables. The indicated operation values correspond to the standard setting, which is supplied if the customer makes no special demand.

On request the contacts can be set to operate within the following values:

3.1 Gas accumulation and low oil

The operation for gas accumulation of the upper float can be set between 180 cm3 and 300 cm3; the lower float can operate between 450 cm3 and 850 cm3. For the lower float the indicated gas volume is the one inside the Buchholz relay.

The operation of the lower float for low oil condition happens before the oil level inside the relay reaches the centreline of the pipe.

3.2 Oil flow

The operating values for the oil flow vane can be set between 0.5 m/s and 3.0 m/s; the setting is made at the factory.

The admitted tolerance is +/- 10%.

3.3 Operation of the contacts

If two contacts are present in one position, they are set to operate simultaneously, but on request they can be set to operate in sequence. For gas accumulation and low oil the operation of two contacts set to operate simultaneously must happen within the tolerance indicated above.

3.4 Notes on tables of wiring diagrams

The following tables showing the performance of the wiring diagrams refer to the normal exercise condition of the Buchholz relay. The normal exercise condition is when the Buchholz relay is full of oil and the oil flow vane is in the off position.
4.0 Tables of function and performance of wiring diagrams

The most commonly used wiring diagrams are described in detail in the following tables.

4.1 Wiring diagram N° 04-101C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
<td>Open</td>
<td>1 normally open contact operated by upper float, closes for gas accumulation and low oil at the indicated value</td>
<td>200 cm³</td>
</tr>
<tr>
<td>1-2</td>
<td>Open</td>
<td>1 normally open contact operated by lower float and oil flow vane, closes for low oil and oil flow at the indicated values</td>
<td>< C/L pipe 1.0 m/s</td>
</tr>
</tbody>
</table>

Notes: On request lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-101F

4.2 Wiring diagram N° 04-202C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>3-4</td>
<td>Closed</td>
<td>1 normally closed contact operated by upper float, opens for gas accumulation and low oil at the indicated value</td>
<td>200 cm³</td>
</tr>
<tr>
<td>1-2</td>
<td>Closed</td>
<td>1 normally closed contact operated by lower float and oil flow vane, opens for low oil and oil flow at the indicated values</td>
<td>< C/L pipe 1.0 m/s</td>
</tr>
</tbody>
</table>

Notes: On request lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-202F

4.3 Wiring diagram N° 04-303C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Open</td>
<td>1 changeover contact operated by upper float, switches for gas accumulation and low oil at the indicated values</td>
<td>200 cm³</td>
</tr>
<tr>
<td>1-3</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>Open</td>
<td>1 changeover contact operated by lower float and oil flow vane, switches for low oil and oil flow at the indicated values</td>
<td>< C/L pipe 1.0 m/s</td>
</tr>
<tr>
<td>4-6</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: On request lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-303F
4.4 Wiring diagram N° 04-105C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Open</td>
<td>1 normally open contact operated by upper float, closes for gas accumulation and low oil at the indicated value</td>
<td>200 cm³</td>
</tr>
<tr>
<td>3-4</td>
<td>Open</td>
<td>2 normally open contacts operated by lower float and oil flow vane, close for low oil and oil flow at the indicated values</td>
<td>< C/L pipe, 1,0 m/s</td>
</tr>
<tr>
<td>5-6</td>
<td>Open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: On request lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-105F

4.5 Wiring diagram N° 04-111C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Open</td>
<td>1 normally open contact operated by upper float, closes for gas accumulation and low oil at the indicated value</td>
<td>200 cm³</td>
</tr>
<tr>
<td>3-4</td>
<td>Open</td>
<td>1 normally open contact operated by lower float, close for low oil at the indicated value</td>
<td>< C/L pipe</td>
</tr>
<tr>
<td>5-6</td>
<td>Open</td>
<td>1 normally open contact operated by oil flow vane, closes for oil flow at the indicated value</td>
<td>1,0 m/s</td>
</tr>
</tbody>
</table>

Notes: On request lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-111F

4.6 Wiring diagram N° 04-115C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Open</td>
<td>1 normally open contact operated by upper float, closes for gas accumulation and low oil at the indicated value</td>
<td>200 cm³</td>
</tr>
<tr>
<td>3-4</td>
<td>Open</td>
<td>2 normally open contacts operated by lower float, close for low oil at the indicated value</td>
<td>< C/L pipe</td>
</tr>
<tr>
<td>5-6</td>
<td>Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>Open</td>
<td>1 normally open contact operated by oil flow vane, closes for oil flow at the indicated value</td>
<td>1,0 m/s</td>
</tr>
</tbody>
</table>

Notes: On request lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-115F
4.7 Wiring diagram N° 04-505C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Open</td>
<td>2 normally open contacts operated by upper float, close for gas accumulation and low oil at the indicated values</td>
<td>200 cm³</td>
</tr>
<tr>
<td>3-4</td>
<td>Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>Open</td>
<td>2 normally open contacts operated by lower float and oil flow vane, close for low oil and oil flow at the indicated values</td>
<td>< C/L pipe 1,0 m/s</td>
</tr>
<tr>
<td>7-8</td>
<td>Open</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: On request Lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-505F

4.8 Wiring diagram N° 04-707C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Open</td>
<td>1 normally open contact operated by upper float, closes for gas accumulation and low oil at the indicated value</td>
<td>200 cm³</td>
</tr>
<tr>
<td>3-4</td>
<td>Closed</td>
<td>1 normally closed contact operated by upper float, opens for gas accumulation and low oil at the indicated value</td>
<td></td>
</tr>
<tr>
<td>5-6</td>
<td>Open</td>
<td>1 normally open contact operated by lower float and oil flow vane, closes for low oil and oil flow at the indicated values</td>
<td>< C/L pipe 1,0 m/s</td>
</tr>
<tr>
<td>7-8</td>
<td>Closed</td>
<td>1 normally closed contact operated by lower float and oil flow vane, opens for low oil and oil flow at the indicated values</td>
<td></td>
</tr>
</tbody>
</table>

Notes: On request lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-707F

4.9 Wiring diagram N° 04-606C

<table>
<thead>
<tr>
<th>Terminal N°</th>
<th>Contact in normal exercise</th>
<th>Functional description of wiring diagram</th>
<th>Standard operation values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-2</td>
<td>Open</td>
<td>2 changeover contacts operated by upper float; they switch for gas accumulation and low oil at the indicated values</td>
<td>200 cm³</td>
</tr>
<tr>
<td>1-3</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-5</td>
<td>Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-6</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-8</td>
<td>Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-9</td>
<td>Closed</td>
<td>2 changeover contacts operated by lower float and oil flow vane; they switch for low oil and oil flow at the indicated values</td>
<td>< C/L pipe 1,0 m/s</td>
</tr>
<tr>
<td>10-11</td>
<td>Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10-12</td>
<td>Closed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: On request Lower float can operate also on gas accumulation; in this case the number of the wiring diagram is followed by the letter F instead of C. Example: N° 4-606F
Buchholz relay ETI "Custos" Series RR, RRF, GQ - Accessories and fittings

<table>
<thead>
<tr>
<th>Pos.</th>
<th>Part denomination</th>
<th>N°</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard execution</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>Casing</td>
<td>1</td>
<td>Aluminium</td>
</tr>
<tr>
<td>1.1</td>
<td>Mounting flange</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1.2</td>
<td>Visor with gas volume graduation</td>
<td>2</td>
<td>Tempered glass</td>
</tr>
<tr>
<td>1.2.1</td>
<td>Visor frame</td>
<td>2</td>
<td>Nylon + 30% glass fibre</td>
</tr>
<tr>
<td>1.3</td>
<td>Oil drain plug</td>
<td>1</td>
<td>Brass nickel coated</td>
</tr>
<tr>
<td></td>
<td>Head with junction box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>Head with junction box</td>
<td>1</td>
<td>Aluminium</td>
</tr>
<tr>
<td>2.1</td>
<td>Junction box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.1.1</td>
<td>Junction box cover</td>
<td>1</td>
<td>Nylon + 30% glass fibre</td>
</tr>
<tr>
<td>2.1.2</td>
<td>Cable entries - max 1" or PG 29 thread</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Head mounting screws</td>
<td>2+2</td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>Manual contact's test device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td>Manual contact's test device</td>
<td>1</td>
<td>Brass galvanised</td>
</tr>
<tr>
<td></td>
<td>Gas drain tap with cap - connection 1/4" male</td>
<td>1</td>
<td>Brass nickel coated</td>
</tr>
<tr>
<td></td>
<td>On request</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 3.1 | Connection of manual test device to ground mounted ac-
| | cessory CCC for test made at man's height | | |
| 3.2 | Reset of oil flow vane when oil flow vane has manual | | |
| 3.3 | Visual indication of latched oil flow vane | | |
| 3.4 | Connection for test of oil flow vane by compressed air | | |
| | or gas - tap with cap thread 1/4" or 1/8" inch male | | |
| 4.1 | Gas drain tap with cap - connection 1/8" male | 1 | Brass nickel coated |
| 4.2 | Gas drain tap with compression fitting for 8x6 mm copper pipe mounted on bottom of casing for easier connection to ground mounted gas receiver RAGA B | 1 | Brass nickel coated |
| 4.3 | Oil drain tap with cap thread 1/4" or 1/8" male or with compression fitting for copper pipe 8x6mm | 1 | Brass nickel coated |
Tipo | **DN** | **A** | **B** | **C** | **D** | **E** | **L** | **S** | **F** | **T**
---|---|---|---|---|---|---|---|---|---|---
RR-F 50 | 50 | 185 | 310 | 125 | 165 | 170 | 240 | 15 | 4 | 18
RR-F 80 | 80 | 185 | 310 | 160 | 200 | 170 | 240 | 15 | 4 | 18

*B = Disassembling height